Mauldeth Road Primary School

Calculation Policy

Policy Aims

This policy is supported by the White Rose Maths Scheme of Learning (SoL) and Ready To Progress Criteria. The White Rose SoL and Calculation Policy have been adopted throughout the school and alongside this document, encourage the use of a Mastery approach to teaching mathematics. Progression within each area of the calculation policy is in line with the Mathematics Programme of Study from the National Curriculum 2013. Our mathematics curriculum has mastery of each topic at its core premise and it is intended that mathematical fluency and reasoning underpin each objective. Children should be exposed to problem solving and encouraged to make connections in order to apply their knowledge in other subject areas.

Throughout this document, the emphasis is put on the use of concrete, pictorial and abstract representations alongside formal written methods. Additionally, it ensures there are sufficient opportunities to explore mathematical language. It is vital that children understand why they are learning new mathematical skills and are encouraged to put each calculation into context from the very
beginning of their learning journeys.

The examples given cover a range of suggestive means by which children can make sense of calculations. It is not indented to be exhaustive, it just gives a variety of different ways that calculations can be solved.

Addition Vocabulary Progression:

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
add						
whole						
part						
altogether						
more						
ones	total	total	total	total	total	total
bigger	plus	plus	plus	plus	plus	plus
	regroup	regroup	regroup	regroup	regroup	regroup
	tens	tens	tens	tens	tens	tens
	ones	ones	ones	ones	ones	ones
	total	sum	sum	sum	sum	sum
		addend	addend	addend	addend	addend
		commutative	commutative	commutative	commutative	commutative
		inverse	inverse	inverse	inverse	inverse
		exchange	exchange	exchange	exchange	exchange
			increase	increase	increase	increase
			hundreds	hundreds	hundreds	hundreds
				thousands	thousands	thousands
					ten thousands	ten thousands
					hundred thousands	hundred thousands

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
	Combine two parts to make a whole.	Any resources can be used, teddies, shells, cars etc.	Children to represent the objects using dots or crosses. They could put each part on a part/part whole model too.		The children will use real objects to see that the quantity of a group can be changed by adding more. The first, then, now structure can be used to create mathematical stories in meaningful contexts. At first, the children may need to re-count all of the items to see how many they have altogether. When they are ready, support them to count on. E.g 4,5,6,7 Encourage the children to represent the number stories using 10 frames, number tracks and their fingers.
	Adding up to 10 : Starting at the bigger number and counting on (Y1)	Start with the larger number and then count on to the smaller number 1 by 1 to find the answer.	A bar model which encourages the children to count on rather than count all.	Place the larger number in your head and count on the smaller number to find your answer. $5+3$ = 8	

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
	Regrouping to make 10 (Y2)	$6+5=$ regroup to fill a tens frame, making $10+1=$ $9+3=$ regroup to make $10+2$ on a bead string			
	Add 1 and 2-digit numbers to 20	-00000000-00000000 When adding ones that cross 10 , it is important to highlight that ten ones is equal to 10 . Children should explore composing numbers to ten from 2 parts. And should recognise the + , - and = symbols. Different manipulatives can be used to represent the exchange. Using manipulatives alongside number lines and Base-10 blocks can help children when looking to count on or partition their 'jumps'. Children have a good understanding of base ten (tens and ones) as well as bar modelling ready for transition into Year 2.		$\left(\begin{array}{c} 8+7=15 \\ 2 \quad 5 \end{array}\right.$ $\begin{aligned} & 8+7=15 \\ & 7+8=15 \\ & 15=8+7 \\ & 15=7+8 \end{aligned}$	Children have a good understanding of base ten (tens and ones) as well as bar modelling ready for transition into Year 2. When using the ' $=$ ' sign, children should be encouraged to say "Is equal to".

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
	$\begin{aligned} & \text { Add three 1- } \\ & \text { digit numbers } \end{aligned}$		 Sise objects. Draw a picture to 		When adding three 1-digit number, chil- dren should be encouraged to look for number bonds to 10 or doubles to add the numbers more efficiently. This supports children in their understand- ing of commutativity.
$\begin{aligned} & N \\ & \underset{\pi}{\mathbb{O}} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \text { Add } 1 \text { and 2- } \\ & \text { digit numbers to } \\ & 100 . \end{aligned}$	\qquad	? 38	 $38+5=43$ $38+5=43$ $5+38=43$ $43=38+5$ $43=5+38$	When adding single digit to a two- digit number, children should be en- couraged to count on from the larger number. They should apply their knowledge of number bonds to add more efficient- ly. E.g $8+5=13$ so $38+5=43$. Hundred squares and manipulatives can support children to find the num- ber bond to 10.

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
	Add a 2 digit number and tens	Children use base 10 to add a multiple of ten to a 2-digit number. They can explore how the ones digit does not change.		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
	Add two 2-digit numbers up to 100	Model using base 10 , place value counters and numicon. Initially, the children might use base 10 resources to partition the numbers into their tens and units and then add them separately. A more challenging example is when the children are required to bridge $\mathbf{1 0}$:	The children can draw out base ten or place value counters to help them visualise this. They can also use a number line to add the two digit numbers. $59+26=?$ Starting with the biggest number, the children add the tens first and then the units. Use number line and bridge ten using part whole if necessary.	When recording, children can show each step in their calculation. e.g. $\begin{aligned} & 49+32= \\ & 40+30=70 \\ & 9+2=11 \\ & 70+10+1=81 \end{aligned}$	

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
$\underset{\sim}{\infty}$	Add 2 digit numbers to 100 - Formal written method		After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. ?	$\begin{array}{r} 38 \\ +23 \\ \hline 61 \\ \hline 1 \end{array}$	At this stage, encourage children to use the formal column method when calculating alongside base 10 or place value counters. Children can also use a blank number line to count on to find the total. Encourage them to jump to multiple of 10. to become more efficient.
	Add numbers with up to 3 digits	Hundreds Tens Ones $\mathbf{0 0}$ 00 0000 00 0 00 0000		$\begin{array}{r} 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$ make 10 416 .2 (2) 3 make 10 $+\frac{184}{823}$	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 3 digits. Ensure children write out the calculation alongside any concrete resources so they can see the links to the written column method. \# Plain counters on a place value gris can also be used to support learning.

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
$\begin{aligned} & \text { ナ } \\ & \frac{1}{\pi} \\ & \mathbb{O} \end{aligned}$	Add numbers with up to 4digits		$?$ 2,138 1,378	1 3 7 8 +2 2 1 4	At this stage, the use of counters or Base-10 are the most efficient manipulatives when adding numbers up-to 4 digits. Children should use the formal method of addition alongside any use of concrete resources so they can see any links to the written column method. For some examples, encouraging children to look for bonds to ten, will help with regrouping. The use of bars will help children unpick word questions, these should be used alongside the formal written method. Formal, written column addition should include the highlighting of Place Value 'titles' (Th, H, T, O etc.)
$\begin{gathered} \bullet \\ \stackrel{0}{1} \\ \frac{1}{0} \\ \underset{1}{2} \end{gathered}$	Add numbers with more than 4 digits			1 0 4 3 2 8 + 6 1 3 1 1 6 6 0 5	At this stage, the use of counters or Base-10 are the most efficient manipulatives when adding numbers up-to 4 digits. At this stage, children should be encouraged to work in the abstract, using column methods. The use of bars will help children unpick word questions, these should be used alongside the formal written method.

Addition

	Skill	Concrete	Pictorial	Abstract	Guidance
$\begin{gathered} 0 \\ 8 \\ 8 \\ 8 \\ 8 \end{gathered}$	Add with up to 3 decimal places.	 (1.	$0.7+0.7=\square$ $0.3+0.2=$ \square		Place value counters and plain counters on a place value grid are the most effective manipulatives when adding decimals with 1,2 and 3 decimal places. Ensure children have experience of adding decimals with a variety of decimal places. This includes putting this into context when adding money and other measures.

Subtraction Vocabulary Progression:

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
whole						
part						
less						
take away						
fewer	difference	difference	difference	difference	difference	difference
smaller	minus	minus	minus	minus	minus	minus
	less than	less than	decreased by	decreased by	decreased by	decreased by
		exchange	exchange	exchange	exchange	exchange
		regroup	regroup	regroup	regroup	regroup
		partition	partition	partition	partition	partition
			minuend	minuend	minuend	minuend
			subtrahend	subtrahend	subtrahend	subtrahend
			rebalance	rebalance	rebalance	rebalance
			estimate	estimate	estimate	estimate
			efficient	efficient	efficient	efficient
					approximate	approximate
					approximate	approximate

Subtraction

	skill	Concrete	Pictorial	Abstract	Guidance

Subtraction

	Skill	Concrete	Pictorial	Abstract	Guidance
Γ	Find the difference within 20	Finding the difference (use Numicon, base 10 and other objects) Calculate the difference between 8 and 5 . Compare amounts and objects to find the difference. 8 goldfish	Find the difference by drawing out the objects and counting the difference. When finding the difference, use bar modelling to show the children that we are finding the missing number and that it is a subtraction. Also use part part whole modelling to visualise this. Count on to find the difference.	$5-3=2$ 5 and 3 have a difference of 2.	
$\underset{\sim}{10}$	Specific direction into using the Part-Part whole model	The part part whole model makes links with addition, helping to explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts, what is the other part?	Use a pictorial representation of objects to show the part part whole model	Move to using numbers within the part whole model.	

Subtraction

	Skill	Concrete	Pictorial	Abstract	Guidance
	$\begin{aligned} & \text { Subtract } 1 \text { and } \\ & \text { 2-digit numbers } \\ & \text { to } 20 \end{aligned}$			ninnon	
$\begin{aligned} & N \\ & \frac{N}{\pi} \\ & \stackrel{N}{0} \end{aligned}$	Subtract num- bers to 100 us- ing regrouping			$\begin{aligned} & 53-8=45 \\ & 45=53-8 \end{aligned}$	

Subtraction

Subtraction

Subtraction

	Skill	Concrete	Pictorial	Abstract	Guidance
$\begin{aligned} & \frac{0}{6} \\ & \frac{1}{\pi} \\ & \frac{\mathbb{1}}{2} \end{aligned}$	To subtract with up to 3 decimal places	\qquad		$\begin{array}{r} 4.1 \\ 5.43 \\ -2.7 \\ \hline 2.73 \end{array}$	At this stage, the use of place value coun ters or plain counters are the more effior 3 decimal places. . 3 decimal place Bead strings can be used to show relation ship between whole numbers and decim numbers and be used to count on our back. Children should use the formal method of addition alongside any use of concrete resources so they can see any links to the written column method. The use of bars will help children unpick word questions, these should be used alongside the formal written method Ensure Children have had plenty of experience of adding decimals with a verity of decimal places. This includes putting this measures.

Glossary

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.

Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

Multiplication Vocabulary Progression:

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
part						
whole						
double						
equal						
group						
	multiply	multiply	multiply	multiply	multiply	multiply
	Repeated addition					
	multiple	array	array	array	array	array
		commutative	commutative	commutative	commutative	commutative
		product	product	product	product	product
		factor	factor	factor	factor	factor
		multiple	multiple	multiple	multiple	multiple
		row	row	row	row	row
		column	column	column	column	column
			efficient	efficient	efficient	efficient
					multiplicand	multiplicand

Multiplication - Times Tables

Multiplication - Times Tables

	Skill	Concrete Pictorial ${ }_{\text {a }}$ Abstract	Guidance
$$	10 times table	000000000000000000000- $\begin{aligned} & 10+10+10+10 \\ & 4 \times 10=40 \\ & \text { commutative } \end{aligned}$ $10 \times 4=40$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digits - the ones are always 0 , and the tens increase by 1 ten each time.
$$	3 times table		Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the three times table, using concrete manipulatives to support. Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using a hundred square.

Multiplication - Times Tables

	Skil	Concrete	Pictorial						Guidan
m $\frac{1}{0}$									Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the four times table, using concrete manipulatives to support. Make links to the 2 times table, seeing how each multiple is double the twos. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
m	8 times table	-000000000-00000000-00000000-							Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the four times table, using concrete manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

Multiplication－Times Tables

	Skill	Concrete	Pictorial			Abstract		Guidance Encourage daily counting in multi－ ples both forwards and back－ wards．This can be supported us－ ing a number line or a hundred square． Look for patterns in the six times table，using concrete manipula－ tives to support．Make links to the 3 times table，seeing how each multiple is double the threes． Notice the pattern in the ones within each group of five multiples Highlight that all the multiples are even using number shapes to sup－ port．
	6 times table	因团因目目团回	6	3		$$ $\begin{aligned} & \times 9=54 \\ & \times 6=54 \end{aligned}$	3	Encourage daily counting in multi－ ples both forwards and back－ wards．This can be supported us－ ing a number line or a hundred square． Look for patterns in the six times table，using concrete manipula－ tives to support．Make links to the 3 times table，seeing how each multiple is double the threes． Notice the pattern in the ones within each group of five multiples Highlight that all the multiples are even using number shapes to sup－ port．
\pm $\frac{1}{0}$ C1	9 times table	898989898988 000000000－000000000－000000000			True $\times 3 \times$ $\times 3=$ $\times 3 \times$	Fals $=5$ 3×3 $9=9$		Encourage daily counting in multi－ ples both forwards and back－ wards．This can be supported us－ ing a number line or a hundred square． Look for patterns in the nine times table，using concrete manipula－ tives to support．Make links to the 4 times table，seeing how each multiple is double the fours．No－ tice the pattern in the tens and ones using the hundred square to support． Highlight the odd，even pattern within the multiples．

Multiplication - Times Tables

Multiplication - Times Tables

Multiplication

	Skill	Concrete	Pictorial	Abstract	Guidance
	Doubling	Use practical activities to show to double a number. Counting and other $4 \times 2=8$	Draw pictures of how to double a number. Double 4 is 8	Double 4 is 8 $4+4=8$	
	Counting in multiples	Count in multiples of different numbers starting with 2,5 and 10. The use of concrete objects will enable them to grasp this concept more quickly.	Use a number line, counting stick or pictures to continue support in counting in multiples of different numbers. Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers $\begin{aligned} & 2,4,6,8,10 \ldots \\ & 5,10,15,20,25 \ldots \end{aligned}$	

Multiplication

Multiplication

	Skill	Concrete	Pictorial	Abstract	Guidance
	Multiply 2 -digit numbers by y digit numbers				

Multiplication

skill	Concrete ${ }^{\text {a }}$ Pictoral	${ }^{\text {Abstract }}$	Guidance

Multiplication

Division Vocabulary Progression:

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Equal groups	Equal groups					
share						
part						
half						
		grouping	grouping	grouping	grouping	grouping
		arrays	arrays	arrays	arrays	arrays
		divide	divide	divide	divide	divide
				divisor	Long division	Long division
					quotient	quotient
				divisor	divisor	
					dividend	divand

Division

	skill	Concrete ${ }^{\text {a }}$ P Pitorial	Abstract	Guidance
$\stackrel{\sim}{\lambda}$			$20 \div 5=4$	

Division

	Skill	Concrete Pictorial	Abstract	Guidance
$\stackrel{N}{i}$	Solve 1-step problems using multiplication (grouping)		There are 20 apples altogether How many bags are there? $20 \div 5=4$	Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line. They can use concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and division.
$\stackrel{N}{\underset{i}{i}}$	Divide 2-digits by 1-digit (sharing with no exchange)	Tens Ones (1) $(1)(1)$ -$)$ $(1)(1)$ Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	$48 \div 2=24$	When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, base 10 and place value counters can all be used to share numbers into equal groups. Part-whole models can provide children with a clear written method that matches the concrete representation.

Division

	Skill	Concrete	Pictorial	Abstract	Guidance
$\frac{\checkmark}{m}$	Divide 2-digits by 1-digit (sharing with exchange)	000 800000 trm 000000 0 000 0 000 0 000 0 000		$52 \div 4=13$	When dividing numbers involving an exchange, children can use base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.
$\stackrel{\downarrow}{\underset{\sim}{m}}$	Divide 2-digits by 1-digit (sharing with remainders)	000 0000000 00 000000 rm 000 0 000 0 000 0 000		$53 \div 4=13 \mathrm{r} 1$	When dividing numbers with remainders, children can use base 10 and place value counters to exchange one ten for ten ones. Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made. Flexible partitioning in a part whole model supports this method.

Division

	skill	Concrete ${ }^{\text {a }}$ Pictorial	Abstract	Guidance
\pm	come		${ }^{844+4=22}$	
	come			2 2

Division

Division

Division

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

